

Coronagraph Design and Operational Modes for the WFIRST CGI

A J Eldorado Riggs

May 16, 2017

Exoplanet Detection

Image Data: exoplanets.eu

- Most planets discovered indirectly
- Direct Imaging: for spectra & more orbital parameters

Current and Future Observatories

WFIRST Coronagraph Instrument (CGI)

- Launch in 2026
- <≈10⁻⁹ contrast at 150-1000 mas
- Visible-light imaging and spectroscopy for cold gasgiant exoplanets & inner debris disks

New Disk Science with WFIRST

1. Introduction

2. WFIRST CGI Modes and Design Choices

- a) Coronagraph design overview
- b) Explanation of CGI modes
- c) Adjusting for sensitivities

3. Coronagraph Design Research

- a) SPC-IFS
- b) SPC-Disk
- c) HLC

4. Summary

Coronagraph Design

Goals:

- Maximize the science yield.
- Minimize risk.

Design Parameters

Sensitivities to:

- Pointing jitter
- Wavefront jitter (coma, astig, focus)
- Primary mirror polarization
- Mask misalignment

Performance Metrics

- Contrast
- Throughput
- Spectral Bandwidth
- Field of View (IWA, OWA, angle)

Mask Properties

- Mask shapes
- Mask materials

Most of the design work in past 1-2 years has been to address sensitivities to aberration & misalignment.

Types of WFIRST CGI Mode

WFIRST pupil

Nominal PSF

Three types of modes to achieve science goals:

- 1. Hybrid Lyot Coronagraph (HLC): exoplanet & inner disk imaging
 - 10% BW, 360° FOV, 3-10 λ_0 /D
 - ~4.0% core throughput

- 2. Shaped Pupil Coronagraph (SPC) for IFS: exoplanet spectroscopy
 - 18% BW, $2x65^{\circ}$ FOV, $2.8-8.8 \lambda_0/D$, lower sensitivities
 - ~3.5% core throughput

- 3. Shaped Pupil Coronagraph (SPC): outer disk imaging
 - 10% BW, 360° FOV, 7-19 λ_0 /D
 - 5.5% core throughput

- Trauger et al. JATIS 2016
- Riggs SPIE 2014
- Zimmerman, Riggs, et al. JATIS 2016

How a Coronagraph Works

Shaped Pupil Lyot Coronagraph (SPLC)

Zimmerman, Riggs, et al. 2016

For WFIRST, we use a combination of pupil-plane and focal-plane optics to suppress diffraction.

The WFIRST Coronagraphs

Benefits of Each Coronagraph:

- HLC: Full FOV, fewer masks, easier alignment
- SPC: Broader bandwidth, lower ab. sensitivities (esp. PM pol.), lower risk with DMs

Polarization-Induced Aberrations

The polarization from the primary mirror is a MAJOR design constraint.

Cycle 6 Polarization: WFE_{γ} -WFE_x

This figure was already cleared in John Krist's presentation "Digging A Dark Hole: Models" in April 2016.

- <u>Differential polarization is mostly astigmatism</u>
 - Negligible near 600nm → HLC
 - Huge WFE far from 600nm → SPC, or HLC+polarizer
- Huge influence on our operational modes

HLC Sensitivities

This figure was already cleared in Feng Zhao's presentation "WFIRST Coronagraph Polarization Update – 11th Stanford Meeting" in March 2017.

- Outside V-band, HLC better with analyzer.
- > Analyzer helps, but pol. cross-term still degrades contrast

CGI Science Bands

NOTE: No polarizers or field stops in IFS channel.

CGI Bands	λ _{center} (nm)	BW	Science Purpose	Imager or IFS	Coronagraph Type	Can Use Polarizer (for Science)	Must Use Polarizer (for Aberrations)
1	508	10%	continuum, Rayleigh	Imager	HLC	X	X (HLC)
2	575	10%	continuum, Rayleigh	Imager	HLC	X	
3	660	18%	CH4 spectrum	IFS	SPC		
4	770	18%	CH4 spectrum	IFS	SPC		
5	890	18%	CH4 spectrum	IFS	SPC		
6	661	10%	CH4, continuum	Imager	SPC	X	
7	883	5%	CH4, absorption	Imager	SPC	X	
8	721	5%	CH4 quantification	Imager	SPC (& HLC?)	x	X (HLC)
9	950	6%	water detection	Imager	SPC	X	

1. Introduction

2. WFIRST CGI Modes and Design Choices

- a) Coronagraph design overview
- b) Explanation of CGI modes
- c) Adjusting for sensitivities

3. Coronagraph Design Research

- a) SPC-IFS
- b) SPC-Disk
- c) HLC

4. Summary

SPC-IFS Design (2015-2016)

SPC-IFS Design (June 2017)

Jet Propulsion Laboratory California Institute of Technology SPC-IFS Performance Comparison

2015-2016 Design

660 nm: <=3 spectra

770 nm: 0 spectra

(for design + 0.5 mas T/T jitter)

Example June 2017 Design

(not fully optimized yet)

- Much higher contrast
- Slightly higher throughput
- Lower T/T and astigmatism sensitivities
- Building design pipeline to maximize yield.

Planned Design Pipeline

1) SPLC-IFS Optimization Code

Python wrapper Done

Grid search over design variables.

AMPL base code

Masks from each design 2) Rapid Optical Simulator (MATLAB)

Simulate effects of:

Nearly Done

- 1) **Tip/tilt**: jitter and stellar size
- 2) Differential **polarization** wavefronts.
- 3) [Later] Empirical fudge factor
 - From empirical (Monte Carlo) simulations of misalignments & aberrations.

Optimization code modifications

Tables: Raw contrast, throughput, core area

4) Human Review

3) Bijan's RV Planet Exposure Time Calculator (MATLAB)

- Look for highest yield designs.
- Learn why some planets are missed, and adjust design strategy to get them.

Exposure times

Exposure times & # of Spectra

Nearly Done

Vary input planet parameters.

1. Introduction

2. WFIRST CGI Modes and Design Choices

- a) Coronagraph design overview
- b) Explanation of CGI modes
- c) Adjusting for sensitivities

3. Coronagraph Design Research

- a) SPC-IFS
- b) SPC-Disk
- c) HLC

4. Summary

SPC-Disk Science Design

2015-2016 Design

Specs:

- 3.3 x 10⁻⁹ contrast
- r=0.33-1.0" FOV (in V band)
- 10% Broadband
- Core throughput = 5.6%

SPC-Disk Science Design

2017 Design A

Specs:

- 6.5 x 10⁻¹⁰ contrast (5x better)
- r=0.33-1.0" FOV (in V band)
- 10% Broadband
- Core throughput = 5.5%

Hybrid SPC-Disk Design

2017 Design (Beta)

Disk Science

WFIRST CGI

- 1.9" FOV in V band
- 10% Broadband
- 3.4 x 10⁻¹⁰ raw contrast

HST STIS

VLT SPHERE

Outline

1. Introduction

2. WFIRST CGI Modes and Design Choices

- a) Coronagraph design overview
- b) Explanation of CGI modes
- c) Adjusting for sensitivities

3. Coronagraph Design Research

- a) SPC-IFS
- b) SPC-Disk
- c) HLC

4. Summary

HLCs for Future Telescopes

- The future of coronagraph design is numerical optimization.
 - Because of sensitivities and obstructed pupils.
- Hybrid Lyot Coronagraphs (HLCs) are
 - Manufacturable
 - High performance
 - Tunable
- Need a fast code for HLC design surveys...

FALCO: FAst Linearized Coronagraph Optimizer

Summary of Modes

To overcome pupil obscurations and aberration sensitivities
 and to achieve science goals,
 need 3 types of operating modes:

- 1. Hybrid Lyot Coronagraph (HLC): exoplanet & disk imaging
 - Full 360° FOV
 - Small IWA
 - Fewest masks (= lower complexity & cost)

- 2. Shaped Pupil Coronagraph (SPC) for IFS: exoplanet spectroscopy
 - 18% BW (for spectra)
 - Small IWA
 - Lower aberration sensitivities

- 3. Shaped Pupil Coronagraph (SPC): disk imaging
 - Full 360° FOV
 - Largest OWA

- Trauger et al. JATIS 2016
- Riggs SPIE 2014
 - Zimmerman, Riggs, et al. JATIS 2016 26

Backup Slides

CGI Filter Wheel Populations

 λ_{1a} = 491nm λ_{1c} = 524nm λ_{2a} =555nm λ_{2b} =594nm λ_{5} =661nm λ_{8} =721nm λ_{7} =883nm λ_{9} =950nm

CGI Science Bands 1 and 2

 Bands 1 & 2 shifted to longer wavelength because polarization WFE is too strong at B-band.